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1 Introduction

In this report, a new algorithm fi>r tile s,>h,li,m of the steady Euler equations in two-

dimensi()na] flow is presented. 'File develc,l)ment of the scheme was motivated by severM

c,msiderations. First, the geometric generality of an unstructured grid was desired to

allow the ease of treating c,mplex geometries. Second, this generality should not be at

the expense of accuracy; it was require<l that the scheme be second-,,rder accurate in

the steady-state. Third, it was desired to kee I) the data structure as simple as possible

to avoid excess (werhead in terms of str>rage, and to minimize conmmnications costs

on any massively parallel c(,mputer that: mas' be used in the future. This requires

a c¢,mpact difference stencil, so) that the grid connectivity information necessary to

update the s,)lution at a node is minimal Finally, the use of upwind differencing was

desired to) provide sharp resolution of sh()cks and to minimize the need for adjusting

artificial viscosity coefficients, in contrast to some well-established central-difference and

finite-element schemes.

The scheme that has emerged fr,m_ the above requirements is called the Upwind

C,.mtrol V_:,lume (UCV) scheme. The ideas for this algorithm have come from two

independent lines of th,,ught. The first comes from the version of the Lax-Wendroff

algorithm deveb,ped by Ni (1!. Ni's interpretati<)n of his algorithm is that it is a form

of upwind scheme, in which the flux residual is evaluated on a cell and then distributed



preferentiallytowardsthedownstreamn()des,lu onedimension,a scalar l,ax-Weudr¢,ff

algorithm with a Courant number of 1.0 beet)rues an exact upwind scheme, i.e. it pr_)-

duces the exact convection of the initial conditions. H_)wever, at smaller values of the

Courant number the upwind biasing is lessened because it is a second ¢)rder term. This

is particularly important in s(dving systems of equatit_ns, such as the Euler equations.

At a shock, if the Courant number associated with the u -t- a characteristic is 1.0, then

the Courant number t)f the u a characterislic is very much smaller, and therefc_re is

,)uly weakly upwinded. However, the latter characteristic is the cme that defines the

shock. This is the reas(_u that artificial visc(,sity ternls must be added to Ni's Lax-

Wendroff calculations t_ prevent unacceptable ,)scillati()ns a_ sh()cks. The second line

of thought comes from the ideas of M_,)re [2], wh(, has devel(_ped a three-dinmnsional

elliptic pressure-correction Navier-Stokes llwlh¢,d. A particular feature of her approach

is the formulation of the steady-state equations. It is effectively a node-based scheme,

but in each cell the momentum and energy equations are assigned to the downstream

nodes, and the ct.,ntinuity equation to the upstream nodes. This gives a stable scheme

without the addition of any mmlerical sn,(_(dhillg, and it produces exceptionally good

answers on very coarse grids. (It has recently been brought t_ the auth_rs's attention

thai Wornam [3] has developed an implicit scheme for the quasi-one-dimensional Euler

equations based on a sinfilar idea. In Wornam's scheme, for subsonic flow, the continu-

ity and energy equations are included from the downwind direction and the momentum

from upwind, aud no numerical smoothing needs t_ be added.)

Unlike most _)ther upwind schemes that solve a Riemann pr()blem in order to obtain

the numerical fluxes, the current approach c(_mpules the flux residual for a cell using a

ceil-vertex trapez_)i(lal rule integration in exactly tile same way as tile cell-vertex sch.emes

of Ni mid Jameson [4}. The present scheme differs from those algorithms in that the

distributi(m of the change in the state vect_)r frt)m the cells to the n_)des is perfi)rmed

usillg a fidly upwinded bias. The directions fc)r the upwinding are based on the local flow

directi,m, rather than being oriented with cell-f,qce normMs, so that the upwinding is

grid independent. Unlike other attempts at grid-independent upwind-differencing that

require lhe construction of an upwind-biased difference stencil (e. g. Davis [5], Levy et

al. [6]), the current scheme requires only inf_)rmation at the cell vertices to compute

the distribution formulae f_)r the cell. Tiffs c_)mpactuess allows a simple data structure,

with cell-t()-node pointers being the (rely connectivity information required. Steady-

state s,)hitions are sec,)ll(t-_)rder accurate; h_wever, f_r unsteady problems the scheme

is only first-order accurate.

Although the resulting scheme w()rks quite well in predicting the pressure field, the

lack of dissipation in the crossflow directi_m tends t_) decc)uple adjacent streamtubes,



resultingin odd-evenoscillationsin the densityacrossstreamtubes.Also, largestag-
nation densityerrorswere(,bservednear stagnationp(fints. Two additionalartificial
viscositytermswereaddedto the schemethat smoothvariationsin eutropyand vor-
ticity. Although theseviscositiesare fi_rnlallyonly first-orderaccurate,they actually
improvethe accuracyof the basicschemein regi(,nsof the flowupstreamof shocks,
astheysmoothquantitiesthat shouldwulishanalytically.This is at the costof slight
smearingof shockwakes.

The scheme is described in the next section for a system of time-dependent linear

hyperbolic partial differential equations in one space dimension. In Section 3, the exten-

sion of the algorithm to the two-dimensional Euler equations is presented. All analysis

of the steady-state difference operator for scalar advection is found iu Section 4. The

entropy and vorticity smoothing are explained in Section 5. Section 6 presents airfoil

results in two dimensions on a triangular mesh. Colwluding remarks are made in Section

7.

2 One-Dimensional Scheme

The standard first-order flux-upwinding algorithm for the linear system,

0U 0U

0-T+ A-_x .... 0,

is a cell-centered scheme. For a mfiform mesh the semi-discrete form is

dUj

where as usual

wit, h

with

r (A+Uj+A Uj+_) -(A_Uj__ 4 AUj)=0

A = TAT 1, A :: diag(Ai),

A _ =TA_T i A + =diag(A+),

A :- TA-T-', A- :: diag(AT),

A' A : n,

This scheme can be rewritten usiilg the following definition',

sgn(A) = T sgn(A)m-', sgn(A) = diag(sgn(Ai))

1 , )_>0
s_n(A) : 1 , A<0

0 J : O.

(1)

(2)



Now then,

(I+ sgn(A))A _ 2A F,

(I -sgn(A))A = 2A-,

and hence

A _ -- ½(I ¢- sgn(A))A,

A := ½(I-- sgn(A)) A.

The difference equation may then be written

dUj
A:_--_ + ½ [(I + sgn(A))A(U.i - Uj 1) _ (I - sgn(A))A(Uj¢_ Uj)] - 0. (3)

Notice here the strong sinfilarity to Ni's distributicm formulae. For a problem in

which all characteristic speeds are identical, and using forward Euler time integration

with a CFL number of 1.0, this scheme is identical to Ni's, which becomes purely

ut)winded under these conditions.

Next, for the quasi-(me dinlensional Euler equations

ou 0F
_--_ _- _ :: H, (4)

the I,!CV (upwind coutr,)l v,)lunw) scheme for a nommiform mesh is

dUj
( . - _ )

(Tj+I - Tj-l) _ \(I 4 sgn(A I_))(Fj2 Fj'_, - (zj--xi._l)H j -i

* (I - sgn(Aj+l))(Fy+l-- F s -(zj+,-zj)Hj+½)). (s)

Notice that for irregular grids, this is an improvement over the usual flux-upwinding

scheme that is only first order because now the source term H is being iucluded with

the correct value and the correct Az s,, that in the steady state the solution is second

order. Also, note that the scheme is conservative. This scheme for the one-dimensional

Euler equations turns out to be identical to that proposed independently by van Leer,

et al. [7].

3 Two-Dimensional Euler Scheme

Now consider the fidl Euler equations of gas dyuamics. In conservation fc_rm, the equa-

tions are

0U 0F(U) 0G(U)
-- ---- o (6)Ot 4 O_ + cgy



where

U /pu F(U) = ,

:E / \ (:E + p)u /

G(U) - .v)/) tlv

pv _ + P "

(pE + p),:

Here, p is the density; u and v, tile velocity c()mponents ill tile z and y directions,

respectively; p, the pressure; and E, the speciih" (,)tal energy. The w()rking fluid is

taken to be an ideal gas with a constant specific heats ratio 7, which gives

u 2 -_ v _ 1 p
Z - _ .... (7)

2 ? I p

In the semi-discrete Euler equations (m an unstructured triangular mesh, the change in

the state vector at a node has contributions fr(_nl all of the cells which surround that

llode.

1"_ dU_ _-_t _(nj),,, (8)
cell_

I) is the vohune of the cell ass<)cialed with no(h, j, which can be defiued as one third

of the sum of the areas of the triangles around j, and (Rj)K is the contribution to the

flux residual at node j due to cell K.

For a cell K with nodes 1,2,3 (numbered c,)unter-clockwise) the flux residual RK is

defined in the usual node-based way:

II K

1

_-F2(y3 -Yl) - G2(;c.3 --xl)

+ F,(,/, y,) G,(_., -_2)). (9)

This residual is then distributed to the three nodes as follows:

R1K =- ½(I--a, Ah: sgn(A,) + #,,aS:sgn(n,,))R_,

'(I cr, Ahzsgn(A,) ) cr, A.i_sgn(A,.))Rh., (10)

R3K : 5t(I - a, Ah3 sgn(A,) -I#,,A,i3sgn(An)) RK

a., and an are parameters controlling the amount of upwinding in the streamwise and

normal direction. Their usual values will be 1.0, while values of 0.0 will give Jameson's

standard node-based algorithm. The streamwise and normal flux Jacobians A, and An

are defined by

A, :: A.s:_ t- Bsv,

An : An= _. Bnu, (11)



where A ---OF/OU and B =--0G/0U. The unit normal vector ff -- (n_., nv) T is defined

to be nc)rmal to the unit streamwise vector .i"::: (_, ._u)7' which in turn is defined as

t71 + ff_ + if3

= )'_,+ g_ + _31" (12)

Finally, the terms Ah i and A3j are defined by these equations:

An 1

AT/2

Art 3

-._) _',

-;_) _',

--Xl) " 8",

An/
Ahj -_

A3j -=

Thus the Afij's and A_j's vary from -1 to +1

Asj
(13)

4 Analysis of Two-Dimensional Scalar Algorithm

To gain some understanding of the workings of the two-dimensional algorithm, consider

its application to the scalar convection equation,

Ou Ou

0--7__ =_0, 04)

which describes a wave moving in the p,_sitive x-direction. To understand the behavior

,)f steady-state solutions, consider the case when the time-derivative vanishes, i.e.

Ou
0. (is)0z

First let us examine the fluxes distributed fi',ml the three equilateral triangles shown in

Fig. 1 :

_IA z O,

,j

R2A 3 R.4 ,

1
R 3.4 "_R A ,

(16)



1
R_B = gRs,

2
R_B --_ 5RO,

R31_ = _RR,

(17)

1
R1c = _ R{, ,

1 RcR2c = _ ,

R3c : O.

(18)

Tim downwind nodes receive most of tile ttux residual, and tile upwind nodes relatively

little. Combining these results yields the steady-state flux operators for the meshes

shown in Fig. 2.

For grid 1, the steady-state equation is

4:

5(-3-., T T)

2ZXy( l , l )3 ut +'_u_ _--_u4- uB - _us-- IUT =0. (19)

For grid 2, the steady-state equation is

2 Ay Ay

_ ay -_u_) -_ _{T_, _- T_2

Ay Ay
l(__u 3 Ay -- -_U2) + - Ul - --i-Us )-T ua _(z u4 T

Ay
-- 2 ul + g u.2 + _ u4 1 s

The best way in which to deternfine whether these discretizations are diffusive is to

perform a Fourier analysis of the steady solutions. Define

ujj, -- z j exp(ikO)

where 0 is the Fourier mode in the y-direction and z is the spatial growth factor in

the z-direction. Because the grid is made of equilateral triaalgles, ujk must be carefully

interpreted. The node numbering system is defined such that for even values of j tile

n__des are at integer values {}fk, while fi_r {}{Idwflues _fj the nodes are at the half-integer

tmsitions. This indexing system is indicated in Fig. 3.

Substituting the Fourier mode into the steady-state equation fi)r grid 1 yields a cubic

equation for z:

{z_--t)(c,.,s(0/2)z _ 2):: O. (21)



The roots of this are
2

2:= 1,-1, cos(el2) (22)

The first two roots correspond to perfect convection of the quantity u along grid lines.

This is possible because the convection velocity is perfectly aligned with the one set of

edges of the computational domain. The third root is negative and has a magnitude

which is greater than unity; this corresponds to an oscillatory, exponential type of

solution. It is related to the fact that tlle discrete stencil includes nodes downstream of

the centrM node, and it shows how the incorrect specification of the outflow boundary

condition can lead to a local error which decays exponentially as one moves into the

domain away from the boundary.

Substituting the Fourier mode into the steady-state equation for grid 2 yields a

quadratic equation for z:

cos(e/2);+2(1+cos (0/2))

One root of this quadratic is

Z1 =

z - 5 cos(0/2) = 0.

-1 - coseC0/2)+ v_(1+ co,_(0t2))2 + 5cos,(0/2)
cos(0/2)

5 cos(Ol2)
1 + co9(e/2) + _/(1 + co,_(o/2)? + 5cos_(Ol2)

_a__ eos(012) 3/i ._n'io12)_o_(e]_) -{ + + 9_o,2(e/2)

5

(23)

(24)

The other root of the quadratic is

5
2:_: - -. (26)

2:1

This root lies in the range z < -5 and so it again gives the oscillatory boundary-layer

behavior at the outflow boundary. In an Euler equation application this would also give

the exponential decay on either side of a shock.

direction.

( 1 _ sin'(e/2)

2+ _ Jcos(0/2) +3 l+._o.,(e/_)

From this last result it is clear that zl is real and lies in tile range 0 < zx < 1. Also, when

0<<1,
1

z, _ I + 04/192 _ I - e4/192. (25)

This shows that the effect of the upwinding is comparable in nature to a fourth-difference

smoothing when the computational grid is not perfectly aligned with the convection



5 Entropy and Vorticity Smoothing

When applied to airfoil flows, the scheme as described above accurately predicts pres-

sure distributions. However, two types of errors have been observed. The first is a

significaalt error (-,_ 30 to 50%) in tile stagnation density. It is highly localized, occur-

ring at the grid point on the surface nearest the stagnation point. This error is not

surprising, as the distribution fornmlae depend on the flow direction which is singular

at the stagnation point. Tile second error is due to the low dissipation in the crossflow

direction, which tends to decouple adjacent streamtubes. This decoupling results in all

odd-even oscillation of the density and velocity in the crossflow direction. The pressure

field ill may case is quite accurate mid non-oscillatory, and no instabilities are observed.

To fix these errors, two additional forms of artificial viscosity are added to the basic

scheme: the first is a smoothing based on a second difference of entropy; the second

is a smoothing based on vorticity. Both forms of the smoothing are conservative, and

they have the property that they will return zero in an isentropic, irrotational flow. For

airfoils in a uniform freestream, the entropy and vorticity smoothing do not corrupt

the flow upstream of any shocks, and smear post-shock wakes only slightly. Also it has

been found that the smoothing does not substantially smear the shocks. These artificial

dissipation models were developed by the first author for his turbomachinery Euler code

UNSFLO and are described in reference [8].

The entropy smoothing is based on a second difference in entropy. The (nondimen-

sional) entropy for an ideal gas is defined as

S-In p -71n -_p ,
p_ P_

where the subscript oo refers to freestream conditions. Since it is desired that only

those entropy variations that are decoupled from the pressure and velocity field are to

be smoothed, the smoothing flux is based on

6U _ __ OUOSv,a 8S

where OU/OS is evaluated at constant pressure and velocity. This gives

l

OU = --£ u (27)
v,_ _ v

2

Note that this is merely the projection of the right eigenvector of the flux Jacobians

0F/0U and 0G/0U corresponding to entropy waves onto the state vector of con-

9



served quantities. This is simply a restatement that only entropy variations are being

smoothed.

The smoothing flux is then computed by taking the average of the entropy of the

three nodes making up a cell, and distributing changes conservatively from each cell

back to the nodes. The contribution of tlle smoothing flux from cell K to its i th node

is then

Here, (At/A)i is the timestep over the area for node i, (A/,st)K is the area over the

local timestep of cell K, Sg - ($1 + $2 + Sa)/3 is the average entropy over the cell, and

v_ is all arbitrary smoothing coefficient.

Although this formula is formally only first order, in fact it improves the accuracy

of the basic scheme upstream of shocks because the flow should be isentropic in that

region. Thus any entropy variations in that region are due to the truncation error of the

sclleme. In shock wakes, of course, there exist entropy gradients, and the addition of

the smoothing does smear the wake. For moderate values of _'e this smearing is smMl.

Inspection of Equation 27 shows that there is no smootlfing of the crossflow momen-

tum component. As a result, there will still be a decoupling of adjacent streamtubes,

and a crossflow odd-even mode is allowed. To get rid of this error, a smoothing based

on the vorticity is used. This smoothing is based on the observation that

V x _ = -V2ff+ V(V.ff)

where _ - q x d is the vorticity. Thus, the addition to tile momentum equations of a

term proportional to V x .3 should smooth the flow when there are vorticity variations,

but not corrupt irrotational flow.

In two-dimensional flow, .J -- l:o_, and the average vorticity in cell K is

'/a_ = _ ff.d_',
OK

and the average value of x7 x (kw)is

,/
aK

Based upon these observations, the vorticity smoothing is achieved by adding to the

flux residuals of each node a term

(At) / AF dy AGdz (29)
_A,

lO



where AF and AG for the cell are defined as

AF = -

0

v_pacurl(_)

0

0

AG = o)0

vvpa curl (_7) '

0

(30)

where v. is an arbitrary smoothing coefficient, a is tile speed of sound for the cell, and

curl (17) is a scaled flow circulation,

Au21Az31 - AUalAZ21 + Av21Ay31 - Ava1Ay21

curl (a) : _/a_2, AW, - a_3, ay2, , (3')

where A()ij =- ()i - ()j. The contributions of the vorticity smoothing fluxes of cell K

to its surrounding nodes are

(At) (AFt(y3-Y2)_--X1 AGK

'U_K:--(-_) (AFK(yl - ya) - AGK(Zl - za)), (32)
kZ-l/ 2

3

The most attractive features of tile entropy and vorticity smoothing are that they

have a compact difference stencil, mad they are well suited to transonic flows with

a uniform freestream. However, these smoothing terms are not suited to high Mach

number flows, in which there are strong shocks with large gradients of entropy and

vorticity downstream of the shocks. For such flows, the smootlfing errors are truly first

order in most of the flow field. Also, the present scheme should be extended to the

Navier-Stokes equations. The use of such smoothing for viscous flows would result in

first-order errors thin-shear-layer regions. This latter problem may be moot, in that

physical viscosity should suppress the odd-even mode and the stagnation density error

as long as the viscous layers are properly resolved. In this case, there may be no need

for tile entropy and vorticity smoothing in the viscous regions of the flow. This question

will be addressed in future work. However, the unsuitability of the present smoothing

for inviscid flows with strong shocks remains.

For flows with freestream Mach numbers significantly greater than 1, a background

fourth-difference artificial viscosity sinlilar to that of Jameson et al. [4] is preferable.

Preliminary computations using fourth-difference smoothing have been run for airfoil

flows from transonic to Mach 3.5 freestreanls, and it works quite well; for transonic flows,

the results are very similar to those obtained with tile entropy and vorticity smoothing.

Because the latter smoothing requires less mernory, it is preferred for transonic flows.

11



6 Results

To illustratethe capabilityof the scheme, solutionshave been obtained fora standard

inviscidtestcase given in [9],and referredto as AGARD 01. This case consistsof

flowover the NACA 0012 airfoilwith a freestreamMach number Moo = 0.8and angle

of attack a = 1.25°. The firstset of resultswere obtained on the gridillustratedin

Fig.4. This grid was generated from a structuredO-grid of 5248 nodes (128 x 41)

by dividingeach quadrilateralcellacrossa diagonal. The structuredgrid itselfwas

used to obtain a benchmark solutionusingthe proven code CFL2D [10],which usesan

upwind-differencingalgorithm.

Figure 5 presentsthe surfacecp distributionon the airfoilsurfacefor CFL2D, the

basicUCV scheme, and the UCV scheme withentropyand vorticitysmoothing. Both o',

and <rnwere equalto 1,and the smoothing coefficientsue and uv forthe thirdcasewere

both taken to be 0.01. All three solutionsagree very wellwith each other.The UCV

scheme givesvery sharp shocks,with only moderate pre- and post-shockovershoots.

There are no undamped oscillationsaround the shocks, as willtypicallyoccur with

central-differencingalgorithms.Note that thisistrue of the solutionwithout entropy

and vorticitysmoothing; the basicscheme UCV scheme givesnonoscillatorypressures.

Also,note thatthe entropyand vorticitysmoothing do not smear theshock significantly.

From theseresults,itisnot apparent why the entropy and vorticitysmoothing are

needed. To show why they are necessary,contoursof constant densityfor the basic

UCV scheme are presentedin Fig.6. Note the boundary-layerbehaviorat the wall,as

wellas the significantodd-even oscillationsinthe crossflowdirection.These oscillations

areparticularlyseverebehind the shock,although they do not resultin any instability.

More serious,but not apparent in Fig. 6, is a largestagnationdensityerror at the

leadingedge. The densityat that pointis1.786,compared to the exact valueof 1.351.

Although not shown, the pressurecontoursare smooth, and the errorin the stagnation

pressureismuch lesssevere,which indicatesthat the error liesin the failureof the

scheme to compute the entropycorrectly.

With the additionoftheentropyand vorticitysmoothing (Fig.7)both theboundary-

layerand the odd-even mode are eliminated.The stagnationdensitynow comes down

to a more reasonablevalue,1.388.Itwas found thatthe entropy smoothing alonefailed

to eliminatethe odd-even mode, as thereisno smoothing contributionto the crossflow

momentum equation where the normal velocityvanishes.Both entropy and vorticity

smoothing were found to be necessary.

This testcasehas alsobeen run using a background fourth-differencesmoothing like

12



that of Jameson et al. [4] in place of the entropy and vorticity smoothing. A smoothing

coefficient of 0.005 was found to be adequate to eliminate most of the stagnation density

error (the computed stagnation density is 1.349 for this case). The surface c v distribution

is shown in Fig. 8. Note that the primary difference between this result and the result

obtained with entropy and vorticity smoothing is more smearing of the shocks, especially

the very weak shock on the lower surface. Density contours are plotted in Fig. 9; they

show that the fourth-difference smoothing also works well to eliminate the crossflow

odd-even mode.

The major reason for using an unstructured grid is the ability to handle arbitrary

geometries. For complicated objects, it may be difficult to get a smooth grid. To

illustrate how the scheme is suitable for distorted grids, a solution for AGARD 01 on a

grid generated by Tim Barth and Dennis Jespersen [ll] of NASA Ames Research Center,

shown in Fig. 10, has been obtained. This grid has 6691 nodes, and was constructed

by generating weighted pairs of pseudo-random numbers and Delaunay triangulation.

Barth and Jespersen obtained a solution for the same test case on this grid, using their

upwind algorithm presented in [11]. The UCV solution on this grid is shown in Figs. 11

and 12. This solution was obtained with the entropy and vorticity coefficients set at

0.01, as before. Again, the surface pressures are in good agreement with CFL2D. (Note:

the CFL2D results are those obtained o5l the grid shown in Fig_4, which has roughly 2.5

times fewer nodes on the surface as the Barth grid.) Sharp shocks with small overshoot

are obtained. The density contours in Fig. 12 are also seen to be very smooth, with no

boundary-layer behavior.

7 Conclusions

A new Upwind Control Volume (UCV) scheme has been developed for obtaining numer-

ical solutions to the Euler equations. This scheme has several very attractive features

compared to existing methods. It is well suited to unstructured grids, providing ge-

ometric flexibility. It is much simpler than most upwind schemes, in that it does not

require complicated flux-limiting. The data structure required to implement the scheme

on a triangular mesh is minimal: only cell-to-node pointers are needed. Although it is

necessary to add smoothing to the basic UCV scheme in order to reduce stagnation

density errors, the choice of entropy and vorticity smoothing does not corrupt the flow

in irrotational, isentropic regions. The ability of the scheme to handle distorted grids

without loss of accuracy has also been demonstrated.

13
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Figure 4: Smooth grid
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Figure 6: Constant density contours, basic UCV scheme
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Figure 10: Irregular grid
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Figure 12: Constant density contours, irregular grid
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